Coded and compressive THz imaging with metamaterials

TitleCoded and compressive THz imaging with metamaterials
Publication TypeJournal Article
Year of Publication2014
AuthorsCM Watts, D Shrekenhamer, J Montoya, G Lipworth, J Hunt, T Sleasman, S Krishna, DR Smith, and WJ Padilla
JournalProceedings of SPIE - The International Society for Optical Engineering
Volume8985
Pagination -
Date Published01/2014
Abstract

Imaging in long wavelength regimes holds huge potential in many fields, from security to skin cancer detection. However, it is often difficult to image at these frequencies - the so called 'THz gap1' is no exception. Current techniques generally involve mechanically raster scanning a single detector to gain spatial information2, or utilization of a THz focal plane array (FPA)3. However, raster scanning results in slow image acquisition times and FPAs are relatively insensitive to THz radiation, requiring the use of high powered sources. In a different approach, a single pixel detector can be used in which radiation from an object is spatially modulated with a coded aperture to gain spatial information. This multiplexing technique has not fully taken off in the THz regime due to the lack of efficient coded apertures, or spatial light modulators (SLMs), that operate in this regime. Here we present the implementation of a single pixel THz camera using an active SLM. We use metamaterials to create an electronically controllable SLM, permitting the acquisition of high-fidelity THz images. We gain a signal-to-noise advantage over raster scanning schemes through a multiplexing technique4. We also use a source that is orders of magnitude lower in power than most THz FPA implementations3,5. We are able to utilize compressive sensing algorithms to reduce the number of measurements needed to reconstruct an image, and hence increase our frame rate to 1 Hz. This first generation device represents a significant step towards the realization of a single pixel THz camera.

DOI10.1117/12.2058082
Short TitleProceedings of SPIE - The International Society for Optical Engineering